Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment
نویسندگان
چکیده
منابع مشابه
Generalized Uncertainty Principle in Quantum Gravity from Micro-Black Hole Gedanken Experiment
We review versions of the Generalized Uncertainty Principle (GUP) obtained in string theory and in gedanken experiments carried out in quantum gravity. We show how a GUP can be derived from a measure gedanken experiment involving micro-black holes at the Planck scale of spacetime. The model uses only Heisenberg principle and Schwarzschild radius and is independent from particular versions of Qu...
متن کاملA Generalized Uncertainty Principle in Quantum Gravity
We discuss a Gedanken experiment for the measurement of the area of the apparent horizon of a black hole in quantum gravity. Using rather general and model-independent considerations we find a generalized uncertainty principle which agrees with a similar result obtained in the framework of string theories. The result indicates that a minimum length of the order of the Planck length emerges natu...
متن کاملBlack Hole Thermodynamics from Quantum Gravity ∗
The semiclassical approximation is studied on hypersurfaces approaching the union of future null infinity and the event horizon on a large class of four dimensional black hole backgrounds. Quantum fluctuations in the background geometry are shown to lead to a breakdown of the semiclassical approximation in these models. The boundary of the region where the semiclassical approximation breaks dow...
متن کاملBlack hole interior from loop quantum gravity
In this paper we calculate modifications to the Schwarzschild solution by using a semiclassical analysis of loop quantum black hole. We obtain a metric inside the event horizon that coincides with the Schwarzschild solution near the horizon but that is substantially different at the Planck scale. In particular we obtain a bounce of the S sphere for a minimum value of the radius and that it is p...
متن کاملBlack Hole Entropy from Loop Quantum Gravity.
We argue that the statistical entropy relevant for the thermal interactions of a black hole with its surroundings is (the logarithm of) the number of quantum microstates of the hole which are distinguishable from the hole's exterior, and which correspond to a given hole's macroscopic conguration. We compute this number explicitly from rst principles, for a Schwarzschild black hole, using nonper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Letters B
سال: 1999
ISSN: 0370-2693
DOI: 10.1016/s0370-2693(99)00167-7